OSE SEMINAR 2012

State Splitting in Continuous Time STNmodels

Mikael Nyberg

CENTER OF EXCELLENCE IN OPTIMIZATION AND SYSTEMS ENGINEERING AT ÅBO AKADEMI UNIVERSITY

ÅBO NOVEMBER 29 2012

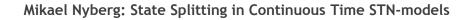


Table of Content

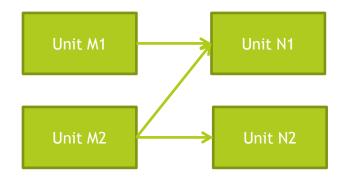
Introduction

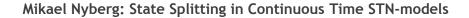
- STN models
- Limited equipment connectivity
- Task Splitting
- State Splitting
 - Imaginary transfer unit
 - Mathematical formulation
 - Benefits
 - Improvements
- Conclusions

State Task Network models

- STN models
 - Are used for modeling batch process in both discrete and continuous time
- An STN graph consists of
 - Task nodes described as rectangles
 - State nodes described as circles
 - Directed arches
- States represent commodities
- Tasks transform one or more states into a new state
 - Tasks are preformed on units
- Arches describe batches of commodities moving through the graph

Example: A simple STN graph

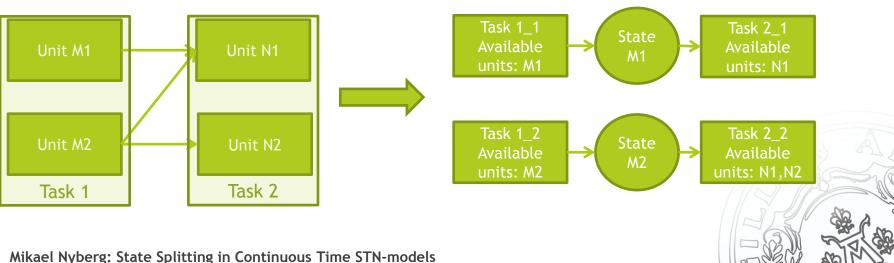



Limited equipment connectivity

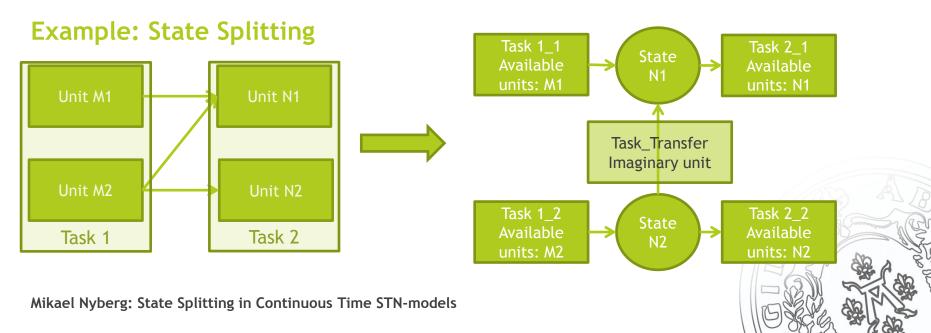
Limited equipment connectivity

- > When at least one unit in a production stage is not connected to all units in the next stage
- Common in many industries

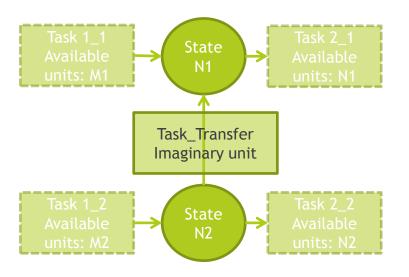
Example: Limited equipment connectivity



Task Splitting


- Kondili et al. proposed task splitting for including limited equipment connectivity in STN models
- Task Splitting does the following:
 - Duplicates tasks for units in the later stage to include limited connectivity
 - Task Splitting does not require any modifications to the mathematical model, only additional tasks are required
- The method has two drawbacks:
 - Increases the number of binary variables
 - Prohibits merging of batches

Example: Task Splitting


State splitting

- Includes limited connectivity by splitting states and connecting them instead of splitting tasks
- Requires:
 - A new set of "imaginary" transfer tasks and units
 - Inclusion of the new task(s) into the material balance constraint
 - Reformulated batch size constraint for transfer tasks

Imaginary transfer unit and task

- For every unit configuration with limited connectivity State Splitting adds a imaginary unit and task connecting two States
 - The transfer task is instantaneous, costless, lossless and does not require any utilities or resources to be executed
 - The only constraints affected by the new task is the material balance and the batch size constraints
 - Adds two new continuous variables/time point to the model
 - Assignment and timing constraints are unaffected
- The mathematical formulation reduces the transfer unit and task to a one-way flow between two states

Variables associated with tasks: Ws_{trasfer,n}- binary variable Wf_{trasfer,n}- binary variable Bs_{trasfer,n}- batch size variable Bp_{trasfer,n}- batch size variable Bf_{trasfer,n}- batch size variable Tf_{trasfer,n}- timing variable

Mathematical formulation

- State Splitting for a continuous time STN model
 - STN model by Maravelias and Grossmann 2003

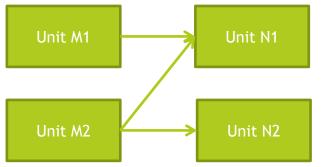
New sets

- *I*^{trans} imaginary transfer tasks
- U^{trans} imaginary transfer units

Reformulated mass balance constraint

$$S_{s,n} = S_{s,n-1} + \sum_{i \in I^c_s} Bs_{i,n} - \sum_{i \in I^p_s} Bf_{i,n} \ \forall s, n > 1$$

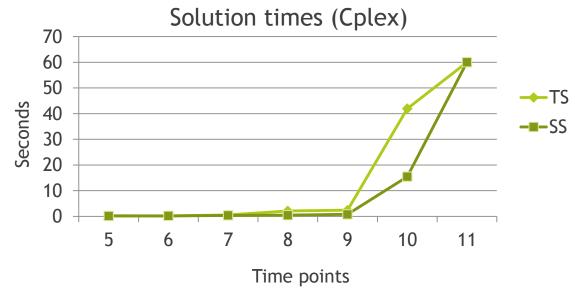
Batch size constraint


$$Bs_{i,n} = Bf_{i,n} \quad \forall \ i \in I^{trans}$$
, n

Benefits of State Splitting

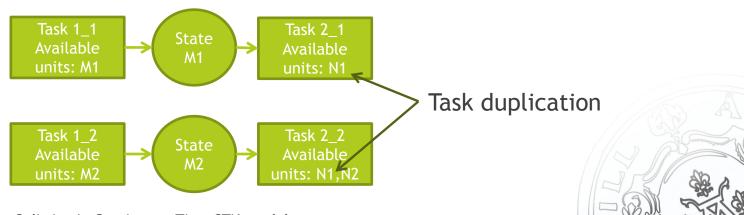
- State Splitting overcomes both drawback of Task Splitting as:
 - Only continuous variables are added to the model
 - The addition of only continuous variables reduces the increase in computation time compared to Task Splitting
 - > The number of additional variables is less than for Task Splitting
 - Merging (and splitting) of batches is possible
 - > The possibility to merge batches increases the flexibility of the mathematical model
 - In some cases this improves the solution quality
- The only drawback of State Splitting is a slight increase in model complexity

Comparison: Number of variables

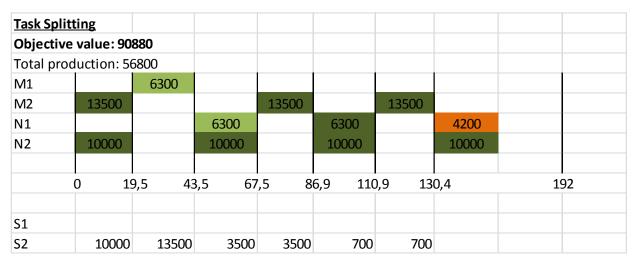

Unit configuration

Method	# of binary *	# of cont. *				
Task Splitting	10	41				
State Splitting	8	37				
*Number of variables / time point						

Computational results for a continuous time STN model using State Splitting

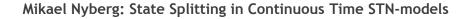

- A simple 1-commodity production planning problem with a two-stage limited connectivity unit setup
 - Objective function: maximize profit
 - Fixed time horizon (196 hours)
 Incremental number of time points

Improving solution quality


- State Splitting is able to produce better results than Task Splitting when:
 - The optimal solution includes at least one occurrence of batch merging
 - > This is not possible in Task Splitting due to the following:
 - Tasks are duplicated
 - The allocation constraint only allows one task to be executed on each unit
 - In State Splitting this can be done because no tasks have been duplicated

Example: Task duplication

Improving solution quality


State Sp	olitting							
Objecti	ve value: 9	4240						
Total pr	oduction:	58900						
M1	9000							
M2		13500)	12900		13500		
N1			6300		6300		6300	
N2	10000		10000		10000		10000	
	0	24	43,5 6	57,5 86	5,5 11	0,5 12	9,9	192
S1		90	00 2700	2700	2800	2800		
S2			3500	3500				
Transfe	r S2->S1			6400		3500		

Conclusions

- State Splitting produces smaller optimization problems than a corresponding Task Splitting formulation
- Solution times
 - Task Splitting vs. State Splitting
 - State Splitting produced faster results than Task Splitting
 - The results are consistent regardless of solver
- Solution quality
 - If the optimal solution includes splitting or merging a batch to/from a unit with limited equipment connectivity State Splitting will find a better solution than Task Splitting

Thank you!

Questions?

